Vous avez dit "caractère" ?
Ces derniers jours, j'ai cherché à mieux comprendre comment gérer UTF-8 dans une de mes applications hobby et j'ai appris pas mal de choses :)
D'abord, j'avais oublié que ASCII était codé sur 7 bits et non pas 8 bits. C'est grâce à ça que UTF-8 est automatiquement compatible avec ASCII (UTF-8 est codé avec des blocs de 8-bits, il leur a suffit de dire que le premier bit est 0 pour les 127 premiers Unicodes encodé en UTF-8).
Les 7 bits m'ont surpris, car ce n'est pas dans nos habituelles puissances de 2. Mais en fait, ASCII fait partie d'une époque où la mémoire et les disques étaient vraiment très cher et il valait donc vraiment mieux ne pas être trop gourmand.
J'ai également appris que pour le langage C, le type char
n'est pas forcément dédié aux caractères, mais plutôt à un stockage
d'au moins 8 bits[^1].
En pratique, les tailles minimum
pour les types C, sont: char
avec au moins 8 bits (1 octet),
short
et integer
16 bits, long
32
bits et long long
64 bits.
Donc, pour pouvoir stocker des entiers sur (au moins) 8 bits (et non pas
sur au moins 16 bits), il faut utiliser char
. C'est pour
stocker ces entiers que l'on a aussi signed char
et
unsigned char
, même si ça n'a pas de sens d'avoir un
"caractère signé" a priori :)
Ensuite, j'ai enfin trouvé à quoi sert GString dans GLib et pourquoi
c'est toujours dit "compatible UTF-8" partout dans la documentation des
fonctions liées à GString: d'après sa
description[^2], il faut juste interpréter une GString comme un
tableau dynamique de bytes avec la sûreté d'avoir le caractère
NUL
de terminaison de string et d'avoir une propriété
len
qui donne le nombre d'octet jusqu'à ce caractère
NUL
. En plus ce type est associés à plusieurs fonctions
généralistes de gestion de texte.
Et là, je me suis dit, mais en fait ça ressemble énormément à
std::string
de C++: un tableau dynamique d'octets avec une
propriété len
. Mais si je me souviens bien, il y a d'autres
types de string en C++ pour la gestion Unicode ? À quoi servent-ils ?
Eh bien, il y a effectivement std::wstring
et 3 autres. wstring
utilise le type
wchar_t
qui est un "wide character", mais qui n'est de
nouveau pas définit explicitement dans le standard C.
En cherchant (encore !) des explications
sur StackOverflow à propos de wchar
, j'ai trouvé ce
lien des "personnes qui sont contre leur utilisation":
https://utf8everywhere.org/
Ils donnent beaucoup d'information à propos d'UTF-8 vs UTF-16 vs UTF-32
et pourquoi ils pensent que c'était inutile d'inventer
wchar_t
que finalement seul std::string
était
utile au C++[^3].
En reprenant son pendant GString
en C, j'ai enfin eu la
confirmation du pourquoi c'est effectivement suffisant pour stocker des
strings en UTF-8, puisqu'il faut juste pouvoir avoir un ByteArray pour le
stockage.
Pour l’interprétation de la donnée, il faut évidemment utiliser les bonnes fonctions (comme utiliser g_uf8_normalize avant de faire des comparaisons de string, par exemple) et bien comprendre quelle définition de "caractère" on a en tête (utf8everywhere donne 7 définitions différentes et incompatibles !).
Voilà, maintenant pour mon application en C, je sais que j'ai besoin de pouvoir traverser un mot donné par itération sur ses "grapheme cluster". Il ne me reste plus qu'à trouver un bon moyen de le faire :)
[^1]: le standard n'est
pas explicite sur la taille des types de base. char
doit pouvoir contenir le basic
execution character set et garantir que sa valeur numérique est
non-négative. Ce qui revient en pratique à utiliser au moins 8 bits pour
char
.
[^2]: oui, j'ai donné le lien de l'ancienne documentation, parce que la nouvelle a perdu cette description. J'ai essayé de rapporter le bug, en espérant l'avoir ouvert dans le bon projet !
[^3]: à la condition que le standard dise que le
basic execution character set
doit être capable de stocker
n'importe quelle donnée Unicode. Ce serait facile de le faire grâce à
UTF-8 qui est compatible avec la définition actuelle de char
.